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This work is intended to be a mathematical underpinning for the ®eld of grain-

boundary engineering and its relatives. The inter-relationships within the set of

rotations producing coincident site lattices in cubic crystals are examined in

detail. Besides combining previously established but widely scattered results

into a uni®ed context, the present work details newly developed representations

of the group structure in terms of strings of generators (based on quaternionic

number theory, and including uniqueness proofs and rules for algebraic

manipulation) as well as an easily visualized topological network model.

Important results that were previously obscure or not universally understood

(e.g. the � combination rule governing triple junctions) are clari®ed in these

frameworks. The methods also facilitate several general observations, including

the very different natures of twin-limited structures in two and three dimensions,

the inadequacy of the � combination rule to determine valid quadruple nodes,

and a curious link between allowable grain-boundary assignments and the four-

color map theorem. This kind of understanding is essential to the generation of

realistic statistical models of grain-boundary networks (particularly in twin-

dominated systems) and is especially applicable to the ®eld of grain-boundary

engineering.

1. Introduction

1.1. Motivation

The ®eld of grain-boundary engineering aims to improve

material properties by controlling the types of grain bound-

aries in a network (i.e. to increase the population of bound-

aries with desirable characteristics) as well as the topological

properties of the networks themselves (e.g. reducing the

likelihood of a large continuous path of weak boundaries).

Signi®cant strides have been made in this ®eld in recent years

(e.g. Gertsman et al., 1994; Randle, 1996; Kumar et al., 2000;

Schuh et al., 2002), resulting in better understanding and

control of brittle fracture strength and related phenomena in

polycrystalline materials. Further progress demands highly

statistically realistic models of grain-boundary networks, as it

is becoming clear that what may at ®rst glance appear to be

subtle and mathematically obscure sources of correlation in

fact have large effects on the real properties of materials

(Palumbo et al., 1992; Gertsman & Szpunar, 1998; Kumar et al.,

2000; Minich et al., 2002). Not just the populations of certain

types of grain boundaries are important; distributions of

triple-junction types and longer-range correlations induced by

crystallographic consistency requirements need to be consid-

ered as well.

In this work, we will consider the inter-relationships among

the various rotations that produce coincident-site-lattice

(CSL) misorientations (i.e. rotations that map a fraction 1=�
of the lattice points from one crystal grain onto lattice points

of another, usually adjacent, grain) (Mykura, 1979). These

misorientations make up a subgroup of the usual rotation

group in three dimensions [SO(3)], with the constraint that the

rotation-matrix elements are all rational numbers. It is known

that, particularly in the case of twin-dominated structures in

cubic crystals (containing a large number of boundaries with

� = 3n), neglecting the interconnectivity of this group of

rotations can lead to statistically skewed unrealistic results

(see the references in the preceding paragraph). For example,

the often-discussed pure �3=�9 twin-limited structure

(consisting entirely of �3 and �9 boundaries in a 2:1 ratio)

(Palumbo et al., 1992; Miyazawa et al., 1996; Gertsman, 2001b)

is easy to construct in two dimensions but does not exist for

most three-dimensional networks unless either the �3=�9

ratio is signi®cantly reduced or low-angle �1 boundaries are

brought into the network (Gertsman, 2001b) (and, in the latter

case, the fraction of �3 boundaries can exceed 2=3). Further,

the frequently simulated two-dimensional hexagonal and

three-dimensional tetrakaidecahedral arrays, while admittedly

convenient, house subtle biases owing to their unusual color-

ability properties. For example, a network of all �9 boundaries

is possible in the tetrakaidecahedral array (as well as for any

two-dimensional structure, via the four-color map theorem),

but for the vast majority of three-dimensional networks no
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such structure is possible. At the other extreme, a common

misunderstanding of the CSL inter-relationships would lead

one to believe that a network of all �9 boundaries is impos-

sible even in two dimensions, which is assuredly not the case

(Gertsman & Tangri, 1995). These examples are developed to

illustrate the power of the formalism presented in this paper ±

once the methods are developed, the demonstration of each of

the above assertions simply amounts to drawing and making

observations on a small number of graphs. Implicit in these

graphs is the entire structure of the CSL rotation group and

the manner in which this group governs the network of grain

boundaries.

Developing these ideas rigorously requires a signi®cant

foray into group theory and number theory, but the reward at

the end is that, once our models are developed, we no longer

have to think in terms of Euler angles, integer quaternions,

rational matrices or axis±angle pairs. Everything about the

interconnectivity of the group can be calculated in terms of

simple algebraic operations on strings and mappings of the

nodes of one graph to the nodes of another. In short, we are

trading algebra for geometry, which has proven time and again

to be a very powerful trade both in modern math and in

physics.

1.2. Overview

The notion of a CSL misorientation has been widely used in

discussions of grain-boundary character (Randle, 1996). In

many materials, certain low � numbers correlate with so-

called special boundaries, which may have different strengths,

chemical resistances or impurity segregation properties to

non-special (or random) boundaries (Randle, 1994, 1996, and

references therein). The CSL model has its limitations, notably

in its neglect of the grain-boundary plane orientation, but has

proven useful enough to serve as a primary means of cate-

gorizing boundary types in both theoretical and experimental

investigations. A large literature has grown up around this

concept since its introduction, particularly in cubic crystals

(which will occupy our attention in this work), although the

CSL concept may be applied to other crystal systems (Boll-

mann, 1972; Iwasaki, 1976; MacLaren & Aindow, 1997;

Gertsman, 2001a). The application of the properties of this

group to twin-dominated systems in particular has seen

considerable attention in recent years (e.g. Kopezky et al.,

1991; Fortier et al., 1995; Gertsman & Tangri, 1995; Gertsman

& Szpunar, 1998; Kumar et al., 2000; Gertsman, 2001a,b, 2002;

Schuh et al., 2002, 2003). The present work owes much to these

endeavours.

In spite of broad interest, there remains much basic

confusion as to the mathematical nature of this group of

rotations. Even so fundamental a result as the � combination

rule governing the set of misorientations around a triple

junction (Miyazawa et al., 1996; Gertsman, 2001a) was only

clearly identi®ed fairly recently and is still frequently misun-

derstood, despite clear mathematical proofs and frequent

reminders in the literature as to the true nature of the rule.

The aim of the current work is to develop the structure of the

CSL rotation group in terms of a network topology and a non-

commutative algebraic representation that, once understood,

make results such as the � combination rule more intuitively

clear. By the end, we will be able to determine what triple

junction (and quadruple node) assignments are consistent

with a given grain topology merely by sketching a few graphs.

Complex multiple intersections, which may occur with sig-

ni®cant frequency in some structures (Kopezky et al., 1991),

can be handled within the same formalism. Speci®c cases such

as the (often neglected) existence of �9±�9±�9 triple junc-

tions and the non-existence of �9±�27a±�27a triple junctions

will be easily derived by checking the relevant graphs. Any

CSL orientation may be expressed as a product of elementary

prime-� operations, then manipulated using algebraic rules.

We show how to extend the formalism beyond the triple

junctions, to quadruple nodes and general topologies, and

demonstrate how fundamental dimensionality effects may be

clari®ed in the present approach. For instance, the notion of a

twin-limited structure is signi®cantly different in two and three

dimensions in ways we can begin to quantify simply by

understanding the structure of the CSL rotation group. Since

the structure of this group is fundamental to grain-boundary

engineering, this type of understanding has signi®cant prac-

tical implications.

In order to reach this point, we will begin with de®nitions,

followed by a brief discussion of the importance of the �1

cubic symmetry group. This will allow us to develop the

algebraic representation and then the network topology of the

CSL rotation group, using examples starting with groups of the

type �p! [with p an odd prime number and ! an exponent

ranging over all the non-negative integers; this is not to be

confused with �pn with a speci®c integer n, which represents a

®nite subset (but not a subgroup) of the group] but eventually

generalizing to � values with more than one prime factor.

After considering some mathematical details, we will show a

simple procedure for drawing a map of any relevant part of the

CSL rotation group and applying this map to a set of crys-

talline grains, thereby determining all of the boundary and

junction types for a given orientation assignment. We will

include speci®c examples drawn from the highly important

�3! `twin-related' group and close with discussions of current

limitations and possible future developments.

In summary, the logical progression is as follows: The

geometry of grain orientation and grain-boundary misorien-

tation is encoded in the CSL group; quaternions convert the

group to an algebra; number theory factorizes quaternions

into strings; the units of the string are mapped to links on a

graph; a simple graph-theory model is used to understand the

� combination rule and other non-intuitive results of grain-

boundary inter-relationships.

2. Definitions and symmetry

2.1. Basic definitions

This discussion will be limited to lattices with cubic

symmetry. The material in this section is well covered in the



literature (Grimmer et al., 1974; Grimmer, 1974; Mykura, 1979;

Grimmer, 1984), so we will summarize results without proof,

however the results and de®nitions are quite scattered and

notations vary widely, so this section is provided in the inter-

ests of clarity. A CSL rotation may be represented by a 3 � 3

matrix of rational numbers with least common denominator

�. � must be an odd integer. Since this matrix is to represent

a rotation, it must be orthogonal (its transpose equals its

inverse) and of determinant 1 (which removes the possibility

of re¯ection±rotations). We will use the convention that, if we

start with the crystal aligned with the reference axes, the

columns of the matrix give the unit vectors of the rotated

crystal's principal axes as expressed in the reference coordi-

nate system. Then right-multiplication of a rotation matrix by

an element of the proper cubic point group (which we will call

�1, as discussed below) does not change the resulting crystal

orientation, and we can think of a rotation as acting to the

right on a grain orientation. The same is not in general true

for left-multiplication by �1. Both this convention and the

reverse (in which all matrices are inverted, their order of

multiplication reversed, and the matrices can be considered to

act on the coordinate axes rather than the crystal grains) are in

common use in the literature (Goldstein, 1950). The distinc-

tion is important, as the formulas for calculating misorienta-

tion are different in the different conventions, as we will see.

Besides a matrix, a CSL rotation also may be represented as

a quaternion of integers (Grimmer, 1974), which, when

normalized to unit magnitude, may be expressed in terms of an

axis±angle pair �n (n being a unit vector specifying the axis

and � the rotation angle) as:

q=jqj � �cos��=2� n1 sin��=2� n2 sin��=2� n3 sin��=2��:
�1�

When the quaternion is expressed in lowest terms, the sum of

the squares of the integers (which we will call the squared

norm, although it is often called simply the norm in the

mathematical literature) will equal one of �, 2� or 4�. A

quaternion with a prime squared norm will be termed prime.

The inverse rotation is given by reversing the sign of either the

®rst or the last three components (the overall sign being

meaningless ± we will implicitly neglect the overall sign of a

quaternion throughout this work, and indeed any scalar

multiple of a quaternion will yield the same rotation since we

normalize it to unit magnitude before converting to a matrix).

We will use either the matrix or the quaternion representation

according to convenience, and for simplicity will often speak

of a rotation and its matrix or quaternion representations as

being one and the same. A distinction must sometimes be

made, since matrix left-multiplication is equivalent to

quaternion right-multiplication. By default, we will use the

multiplication order appropriate for matrices, noting excep-

tions where they arise.

These de®nitions suf®ce for us to construct the group �1,

being the set of CSL rotations with � = 1. We simply generate

all column permutations (a factor of 3! = 6) and sign reversals

(a factor of 23 = 8) for the three columns of the 3 � 3 identity

matrix, resulting in 48 matrices, half of which will have a

determinant of +1. �1 thus has 24 elements and is nothing

other than the cubic point group with the rotation±re¯ections

removed. This is not surprising, since each �1 operation by

de®nition maps a fraction 1=� = 1 of the original lattice points

onto lattice points. Therefore, as far as the cubic Bravais lattice

is concerned, any element of �1 is equivalent to a null

operation.

Eventually, we will show how to factorize any CSL rotation

quaternion into a product of prime quaternions and a single

(physically meaningless) element of �1. In order to develop

this notion, we shall use a hierarchy of equivalence classes

based on the �1 symmetry group. These ideas of equivalence

will enable us to introduce a set of arbitrary conventions

(without loss of generality in any physically meaningful sense),

which will allow us to assert the uniqueness of the factoriza-

tion.

The structures of the coincident site lattices themselves will

not be discussed here, but are well described in the literature

(e.g. Grimmer, 1974, 1976). Instead we are only discussing the

rotations that produce CSL's and their inter-relationships. The

interesting and important theory of triple-junction CSL's

(Gertsman, 2001a,b) is similarly beyond the current scope.

2.2. Hierarchical categorization of CSL rotations

Since �1 contains only symmetries of the crystal, it follows

that, if we start in the natural coordinate system of a cubic

crystal, performing a �1 operation before any other rotation

R is equivalent to rotating by R alone. The set of rotations thus

naturally breaks into cosets R�1 of rotations equivalent to a

given R. As a matter of notation, right-multiplying a matrix R

by a set of matrices such as �1 simply means forming all

matrices of the form RS with S being any element of �1, and

similarly for left-multiplying. A capital S symbol will always

represent an arbitrary element of �1 in this work. Each coset

represents a grain orientation with respect to a reference

grain, and we are free to choose any of the 24 elements RS of

the coset to represent the rotation. It is an elementary result of

group theory that the cosets do not overlap, are all of the same

size and cover the entire CSL group.

If, after a rotation R, we perform a �1 rotation in the frame

of the reference grain, then this amounts to rotating by the

same angle but about a different (but symmetrically equiva-

lent) axis. For example, if R rotates by 180� about [110], there

are S1 and S2 in �1 such that S1RS2 is a rotation of 180� about

[011]. The set of matrices �1R�1, which will have as many as

242 elements (possibly fewer depending on symmetries in R),

therefore all represent the same `type' of CSL misorientation.

We will call the equivalence class �1R�1 a subtype, to

distinguish it from the conventional type de®ned below. Since

two grain orientations are represented by cosets R1�1 and

R2�1, the misorientation between the two grains is repre-

sented by the rotations (R1�1)ÿ1(R2�1) = �1Rÿ1
1 R2�1 in the

frame of grain 1 (the set �1, being a group, is the same set as

its elementwise inverse). The choice of which elements of �1

are used in the representations of the two grains is entirely
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arbitrary and physically meaningless, so that any element of

the same subtype as Rÿ1
1 R2 would serve equally well as a

representation. Thus this notion of `subtype' is the appropriate

category for describing a misorientation from one grain to

another, in the reference frame of the ®rst grain. The inverse

subtype �1Rÿ1
2 R1�1, which may be different but will have the

same �, represents the misorientation going from grain 2 to

grain 1.

We note in passing that the product R2Rÿ1
1 gives the

misorientation rotation in the frame of the reference grain,

which is in general of a different subtype (often even a

different �) to the misorientation as expressed in the frame of

either grain. Thus, these matrices may be useful for calculation

but are irrelevant in determining the `specialness' of a given

grain boundary. If we had used the reverse of our rotation

convention (see x2.1), then the roles of Rÿ1
1 R2 and R2Rÿ1

1

would be reversed. Thus it is important to clarify which

convention is being used. Unfortunately, this is not universally

recognized and ambiguous applications of these matrices are

easy to ®nd in the literature.

It is customary (Mykura, 1979) to categorize CSL rotations

according to what we will term `types' of the form

(�1R�1)[(�1Rÿ1�1) (with as many as 48 �24 elements)

and to label the types with a lower-case letter, e.g. the set �27a

represents one such type of the rational rotation matrices with

common denominator 27. The letter is omitted when a given �
only has one type. Letters are assigned in order of minimum

misorientation angle, with ties broken according to the sum of

the indices of the minimum-angle rotation axis (h,k, l), given

in lowest terms (Mykura, 1979). Unfortunately, this criterion is

still incomplete as it fails to provide an ordering for, e.g., the

�229 types given by quaternions [14 5 2 2] and [14 4 4 1]. If we

break ties by ®rst sorting in order of h2+k2 + l2 and then by h3 +

k3 + l3, the ambiguity problem is solved without creating the

need to alter any existing tables. The types are the appropriate

category for describing a misorientation between two grains in

their own reference frames, allowing for interchanging of the

labels of the two grains. The `specialness' of a boundary will

thus depend on its type. In terms of integer quaternions, all

elements of a type may be generated by ®nding a quaternion

in lowest terms [ABCD] with squared magnitude �, then

generating the set {[ABCD], [A+B AÿB C+D CÿD],

[A+C AÿC B+D BÿD], [A+D AÿD B+C BÿC],

[A+B+C+D A+BÿCÿD AÿB+CÿD AÿBÿC+D],

[A+B+CÿD A+BÿC+D AÿB+C+D AÿBÿCÿD]},

then ®nding all the permutations and sign reversals for each

element of this set, and ®nally eliminating redundancy

(recognizing that two quaternions that are nonzero scalar

multiples of each other are equivalent) (Grimmer, 1984).

Let us consider �3 as an example. All integer quaternions

with squared magnitude 3 will have the same `shape' (i.e. will

be equivalent but for permutations and sign reversals) as

[0111], which happens to represent a 180� rotation about [111].

Since there is only one such shape, �3 has only one `type'. We

can generate every single �3 quaternion using the methods in

the preceding paragraph. We ®nd that they are the permuta-

tions and sign reversals of the set of shapes {[0111], [0112] and

[3111]} (with squared magnitudes 3, 2 � 3 and 4 � 3), 96 in

total once the overall-minus-sign redundancy is eliminated.

These can be separated into 4 cosets of 24 elements each. We

can arbitrarily choose one element of each coset to represent

it; later in this work we will use the 180� rotations about [111],

[1�1�1], [�11�1] and [�1�11]. These four elements, expressed as

rotation matrices [using, e.g., the formulas in Grimmer (1974)],

can be right-multiplied by each of the 24 elements of �1 to

generate every possible �3 rotation.

Table 1
Hierarchical categorization of the CSL rotation group, a subgroup of SO(3).

Each row consists of a union of sets from the row above. In addition, the types may be categorized by symmetry class (Table 2), but not in a manner that ®ts into
this hierarchy. Types and subtypes will be identical unless the type has 48*24 elements [putting it into the (a, b, c, d) class]. The product over p is for all prime
factors p of n.

Term Formula Signi®cance Number of elements

Element R A single rotation 1
Coset R�1 A grain orientation 24
Subtype �1R�1 Misorientation of an ordered pair of grains (1, 4, 6, 8, 12, or 24) � 24
Type (�1R�1)[(�1Rÿ1�1) Misorientation of an unordered pair of grains (1, 4, 6, 8, 12, 24, or 48) � 24
�n �n (n must be odd) CSL rotations with a ®xed ratio n of unit-cell sizes m�n� � 24n

Q
p �p� 1�=p

�n! �1[�n[�n2[�n3[ . . . A group consisting of repeated applications of elements of �n 1 (if n > 1, odd), 24 (if n = 1)
CSL group

S1
k�0 ��2k� 1� All 3 � 3 rotation matrices with all rational elements 1

Table 2
Construction of representatives a

p
i in quaternion form for each of the

possible classes of types.

a, b, c and d are distinct positive integers, and the sum of the squares of the
elements of each quaternion is equal to � = p, an odd prime. The construction
ensures that (i) each coset is represented exactly once, and (ii) the inverse of a
representative rotation is also a representative rotation. 180� rotations (with
®rst element equal to zero) are chosen where possible, so that each rotation is
its own inverse in these cases.

Class
Number
of cosets Representatives

[1000] 1 (�1) [1000]
[1110] 4 (�3) [0111] [0�1�11] [01�1�1] [0�11�1]
[ab00] 6 [0 �a b 0] [0 0 �a b] [0 b 0 �a]
[aaab] 8 [�b �a �a a]
[aab0] 12 [0 �a �a b] [0 �a b �a] [0 b �a �a]
[abc0] 24 [0 �a �b c] [0 �b �a c] [0 �a c �b]

[0 �b c �a] [0 c �a �b] [0 c �b �a]
[aabc] 24 [�a �a �b c] [�a �b c �a] [�a c �a �b]
[abcd] 48 [�a �b �c d] [�a �c �b d] [�a �b d �c]

[�a �c d �b] [�a d �b �c] [�a d �c �b]



We have categorized the CSL rotations, in hierarchical

order, according to their � numbers, types

(�1R�1)[(�1Rÿ1�1), subtypes (�1R�1) (which are often

the same as the types), cosets R�1, and individual rotations R

(summarized in Table 1). The process of mapping the cubic

CSL rotation group will then consist of identifying the cosets

and determining the types of the misorientations for each pair

of cosets. The symmetry properties allow us to do this for a

single representative of each coset, with the assurance that the

choice of representative will not affect the outcome.

3. Algebraic representations

3.1. Context and statement of the problem

We will start by deriving the properties of an algebraic

representation of the CSL group as strings of representative

rotations a
p
i with i identifying a coset and the superscript p

giving the � value (the variable p will always represent an odd

prime in this work). The choice of which representative to use

for a given coset is arbitrary, but some choices will be much

more convenient than others. It is always possible to choose

representatives a
p
i such that each coset is represented exactly

once, and the inverse of each representative is also a repre-

sentative (possibly itself). The construction of representatives

is simplest in terms of integer quaternions and relies on the

fact (Grimmer, 1974, 1976) that the relevant quaternions will

fall into only a few classi®cations with known numbers of

cosets for a given type. Table 2 explicitly shows one possible

construction for each of these classi®cations. The types

themselves may be easily constructed by ®nding all the

fundamentally distinct solutions over the integers of w2 + x2 +

y2 + z2 = p, for a given p, which are easily found by trial and

error. Since we can construct the a
p
i for any type, we can

combine these constructions to obtain our representatives for

the entire set �p. �p itself is obtained by right-multiplying the

set of a
p
i by the 24 elements of �1. Each element will come up

exactly once in this enumeration. The veri®cation that any two

representatives as produced in Table 2 are in different cosets is

a straightforward but tedious exercise in algebra and will not

be detailed here.

Once we have constructed our representatives, we may (as

will be proven below) represent any given CSL as a string

representing an ordered product of representatives. Once we

have derived a few rules for the identi®cation, uniqueness and

manipulation of these strings, we will implicitly have an

algorithm for mapping any desired part of the CSL group.

Once this is done, we will be able to start drawing the graphs.

Besides the de®nitions and development we have already

presented, and the elementary result that the set of all CSL

rotations is a group (obvious when one considers the rotations

in rational matrix form), we will use two results from the

literature to complete our proofs. The ®rst is the � combi-

nation rule (Miyazawa et al., 1996; Gertsman, 2001a), which

states that, when two CSL matrices are multiplied such that

AB = C, their � values are related by the formula

�A�B � k2�C; �2�
where k is a common factor of �A and �B. Note that this is

often misunderstood, such that many authors insist that k = 1

for one of the permutations of A, B and C. This is overly

restrictive and discounts perfectly valid triple junctions such as

�9±�9±�9 (with k = 3) (Gertsman & Tangri, 1995). For

example, �3±�15±�5 is valid (with k = 3, a common factor of

3 and 15), while �9±�5±�5 is not (since k = 3 is not a factor of

5). The second result is a count of the number m(�) of CSL

rotations of a given �. This has been variously represented

(Grimmer, 1973, 1976), and may be derived directly from

number theory as

m��� � 24�
Y

p

p� 1

p
; �3�

where p is the set of prime factors of � [de®ned so that the

special case m(1) equals 24]. The factor of 24 comes from the

24-fold redundancy in the representations of CSL's in terms of

rotations, and may be omitted if it is understood that we are

talking about cosets of �1 rather than individual rotations.

Thus we de®ne m0(�) = m(�)=24. For example, m(1) = 24,

m(3) = 96 and m(9) = 288, with m0 = 1, 4 and 12 cosets,

respectively. In the special case where � = pn with n > 0, we

have m0(�) = (p + 1)pnÿ1. With n = 1, we have (p + 1) cosets of

24 elements each. Thus, the index i in the representatives a
p
i

can be taken to range from 1 to p + 1.

It follows directly from the � combination rule that left- (or

right-) multiplying a rotation R with � = � by an element of

�p will result in either an element of �(�=p) (`lowering' �) or

one of �(�p) (`raising' �). All � values are integers, so if p

does not divide �, then all the a
p
i must raise �. On the other

hand, if p divides �, then some of the representatives a
p
i may

lower �, while others raise it.

What we shall prove is that, in the latter case, all the a
p
i will

raise � except for one, which will lower it. We will use integer

quaternions for purposes of this proof. To avoid confusion

with the a
p
i which up to now have been matrices, we will use

the symbol A
p
i for the quaternion form of the representative

rotation a
p
i , recalling that the order of multiplication is

reversed between the quaternion and matrix representations.

3.2. Proof of the validity of the algebraic representation

The proof rests on a textbook result (Hardy & Wright, 1938;

Conway & Smith, 2003) from number theory that states that a

quaternion Q (with integer components) with a composite

squared norm N may always be factored (although in general

not uniquely) into a product of prime quaternions with integer

components, one for each element in the prime-factor

expansion of N, and with the factors appearing in any desired

order. With this fact in hand, all we need do is interpret this

old result in terms of our CSL rotations. The technical

complications involving what Conway & Smith term `unit

migration' as well as the factors of 2 that are explicitly dealt

with by Hardy & Wright are handled in our case by the

recognition of the hierarchy of equivalence classes, the

establishment of our arbitrary conventions and the transfor-
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mations which we will encounter later in equations (8)±(10).

An understanding of such details is not necessary for following

the discussion, however, and we only note this issue in passing

for the interested reader.

We have hypothesized (using the notions in x2.1) that we

have a Q with N = �, 2� or 4�, and � containing a factor

of p, an odd prime. We may therefore produce a product

q1q2 . . . qk = Q of prime quaternions qi such that the squared

norm of qk, |qk|2, is equal to p (to within factors of 2, which are

unimportant via the arguments in Hardy & Wright, once we

recognize that the considerations involving associates and

factors of 2 are taken care of by our �1). Let Q0 =

q1q2 . . . qkÿ1. Since for any quaternions Q1 and Q2 we have

|Q1|2|Q2|2 = |Q1Q2|2 (Conway & Smith, 2003), we know that

|Q0|2 = one of �=p, 2�=p or 4�=p, i.e. Q0 is a CSL rotation in

�(�=p). Our purpose in splitting off this quaternion prime

factor qk is to determine how many of the A
p
i will lower �,

knowing that all the others will raise it.

Now, since qk is in �p, there exists exactly one A
p
i in the

same coset as qk, i.e.

qk � SA
p
i or qkA

p
ÿi � S �4�

(to within meaningless scalar factors), where S is a quaternion

representing an element of �1 and A
p
ÿi is the quaternion

representative of the inverse rotation of A
p
i , which by

construction is guaranteed to be a representative as well. (This

is just a notation ± we know by construction that A
p
ÿi = A

p
j for

some positive j, possibly with j = i. There are still only p + 1

representatives for a given p.) Thus we have constructed a

representative quaternion A
p
ÿi such that QA

p
ÿi is the same

rotation as Q0S 2 �(�=p). That is, A
p
i lowers Q, leaving (again

to within meaningless scalar factors) the quaternion Q0. This

procedure may be iterated to produce a prime-factor

decomposition of Q, as we will see below.

The fact that there is in general more than one expansion

q1q2 . . . qk = Q with |qk|2 = p does not in any way restrict the

validity of the proof, for the � number of a rotation is entirely

independent of the choice of representation. Thus the fact that

A
p
i lowers Q for one of the p + 1 choices of i is an invariant

with respect to the choice of expansion of Q. The only arbi-

trariness is in our a priori choices of the A
p
i among all the

possible representatives of the cosets of �p.

Having completed the existence part of the proof, we return

to the matrix representations (which will be more convenient

for proving uniqueness), recalling that the order of multi-

plication is reversed. If we represent � as a product of odd

primes in non-decreasing order:

� � p
n1
1 p

n2
2 . . . p

nk

k ; �5�
where the n's are exponents. By repeated application of the

above algorithm, we may generate a string of representative

prime factors of the coset of a rotation matrix R:

RSj � a
p1
i1;p1

a
p1
i2;p1

. . . a
p1
in1 ;p1

a
p2
i1;p2

. . . a
pk
ink;pk

; �6�
where the i's are the various indices identifying the repre-

sentatives in the string and Sj 2�1. For example, we might ®nd

that a certain �45 rotation matrix R may be lowered by left-

multiplying by a3
ÿ1, resulting in a new matrix R0, which itself

may be lowered by left-multiplying by a3
ÿ3, leaving a matrix R00,

which may ®nally be lowered by left-multiplying by a5
ÿ2,

leaving the �1 matrix S8. Thus, our original matrix R may be

expressed as the product a3
1a3

3a5
2S8, with 3 � 3 � 5 = 45 and the

subscripts chosen arbitrarily for purposes of the example. This

string is sorted in the sense that the prime factors are in non-

decreasing order (we could just as easily have produced a

reverse-sorted string, a concept that we will return to as it

implies some interesting things about loops in the CSL group).

The string is also of minimum length for representing R, since

by the � combination rule we need at least as many prime

factors a
p
i as there are elements in the product-of-primes

expansion of �. It is clear that no two adjacent elements of the

string are inverses of each other, for then the string would be

immediately shortenable to an equivalent string, which we

know not to exist. This property of being not immediately

shortenable we will abbreviate as NIS. Thus, we have an

algorithm for producing a minimal-length sorted NIS string

representing the coset of any given CSL rotation.

To prove uniqueness at this point requires merely a bit of

combinatorics, by which we ®nd that the number of sorted NIS

strings with a prime expansion as given in (5) is exactly

M0��� � �
Yk

j�1

pj � 1

pj

; �7�

which is equal to the number m0(�) of cosets in the set ��.

This is because the ®rst representative for a given p may be

chosen to be any of the p + 1 options, but after that we are not

allowed to choose a representative that is the inverse of the

one we have chosen most recently. By the algorithm given

above, any coset will produce a minimal-length sorted NIS

string, and clearly a single sorted NIS string (which describes

one speci®c rotation) cannot represent two different cosets. So

by applying our algorithm to one chosen element of each coset

of a given set ��, we can generate all M0(�) = m0(�) of the

sorted NIS strings of the form given in (6), with no chance for

redundancy or ambiguity. When this is applied to the whole

CSL group, no sorted NIS strings of any size will be left

unassigned.

Therefore, we come to the core result, that any CSL rota-

tion is represented by exactly one sorted NIS string. As a

corollary, we ®nd that, if a sorted string is not immediately

shortenable, then it is not shortenable at all, i.e. no shorter

string represents the same coset and the prime-factor expan-

sion of the � number of the rotation may be read directly off

the sequence of representatives.

We should emphasize that this uniqueness comes at the cost

of some arbitrary conventions, namely the speci®c selection of

the representatives (or generators) a
p
i and the sorting of the

primes in non-decreasing order. These derive from the �1

symmetry group and the non-commutativity of rotations. If

the primes are sorted in a different order (e.g. non-increasing),

we will obtain a different NIS string (e.g. a reverse-sorted one)

and there is no guarantee that the representatives in different

sortings will have any particular relationship. They may be



identical, they may partially overlap or they may not overlap

at all and even be of different types (Barber, 2003). The

requirement that the inverse of a representative be a repre-

sentative was convenient for the sake of the proof but it may

be dropped at the expense of having to manipulate more

elements of �1 in the algebra.

3.3. Algebraic rules

Now that we can generate our strings, we need to know how

to manipulate them. Taking the inverse of a string is simple; we

merely reverse the order of the elements and replace each

element with its inverse. Multiplying two strings is done by

simple concatenation. Two adjacent inverse elements may be

removed or inserted into any string at will. If we restrict

ourselves to a set �p! in which all the � values are powers of a

single prime p, then this completes all the rules for algebraic

manipulation. This is because the issue of sorting does not

arise, and there is exactly one NIS string for any coset. In other

words, if we think of the set �p! as being a collection of cosets

linked by the representatives a
p
i , then the set is a so-called `free

group', that is, a group with no relationships among its

generators (in this case, the representatives) other than the

existence of an inverse. The structure of a free group is quite

simple and may be represented as a graph with no loops and

the same number of neighbors (in this case p + 1) for every

cell. This is the basis of the topological model discussed in the

next section.

The additional algebraic rules needed to handle cases of �
having more than one prime factor are signi®cantly more

cumbersome but can be compactly expressed in the following

forms:

a
p1
i a

p2
j � a

p2
k a

p1
l Sm �8�

Sma
p
i � a

p
j Sn �9�

and SmSn � Sk; �10�
where the relationships among i, j, k, l and m must be deter-

mined in each particular case. The result will depend on the

choice of representatives for the two primes p1 and p2. In

words, we may swap prime representatives provided we

modify their subscripts and account for a possible �1 dis-

crepancy, we may swap an element of �1 with a representative

provided the subscripts are adjusted accordingly, and we may

perform operations based on the group structure of �1.

Equations (10) simply constitute the character table of �1. As

for transformations of the form given in (9), it is possible to

work out every possible case by simply ®nding all the Sm and

Sn that satisfy the equation for any given pair of representa-

tives of the same subtype. By de®nition (recalling x2), repre-

sentatives of different subtypes will not interact via equations

of this sort. Once this problem is solved for all the classes

given in Table 2, there are no more such relationships to be

found. We have done this but the results are space-consuming

and will only appeal to a small audience and so are omitted.

Note that except in the lowest-symmetry cases there will be

more than one m and n solving the equation for a given p, i

and j.

The remaining algebraic relationships, as given in (8), have

to be generated systematically for each speci®c case (i.e. pair

of prime factors) of interest. There is no guarantee that the

two pairs of generators even have types in common and so the

job must be done for each pair of prime factors involved in a

calculation rather than just for the classes given in Table 2. It is

a simple matter to program a computer to do this auto-

matically. We have done this for all primes less than 50 (which

surely includes all physically meaningful cases) but again the

resulting tables would be too large to publish here.

Some examples should clarify the notation. For compact-

ness, we will give the examples in quaternion rather than

matrix form (recalling, again, that the order of multiplication

is reversed). Equation (8) has the following example from

p1 = 3, p2 = 5:

0 �1 �1 1
� �

0 0 2 1
� �

� 0 1 0 0
� �

0 �2 1 0
� �

0 �1 1 �1
� �

� 1 �3 1 �2
� �

; �11�
where the � values of the quaternions appearing in this

equation are merely their squared magnitudes, in order 3, 5, 1,

5, 3 and 15. This shows two factorizations of the �15

quaternion [1�31�2], one sorted and the other reverse-sorted,

with the �1 element compensating so as to obtain the same

representation of the coset in both cases. An example of (9) is:

0 �1 �1 1
� �

1 1 0 0
� �

� ÿ 1 1 0 0
� �

0 1 �1 �1
� �

� 1 �1 0 2
� �

; �12�
where in this case the � values are, in order, 3, 1, 1, 3 and 3

(since the squared norms are 3, 2, 2, 3 and 6). The overall

minus sign on the middle expression is meaningless (and

would not appear in the matrix representation). Thus, the two

rotations of type �3 have been interconverted by multiplying

by appropriate elements of �1. Finally, (10) has as an example:

0 1 0 0
� �

1 1 1 1
� � � �1 1 �1 1

� �
; �13�

in which all quaternions are �1.

Once all the algebraic transformations [inversion, pair

creation and annihilation, and equations (8)±(10)] are worked

out for the prime factors of interest, then all calculations may

be done entirely in terms of representatives and �1 elements;

the structure of the group is entirely implicit in these rules, and

there is no further need to consider matrix or quaternion

representations except to link to real-world calculations. In

general, these algebraic manipulations would be quite tedious,

but the transformation rules in the �p! case are quite simple

and allow us to make a number of observations via examples.

We proceed to do this in the important case of �3!, known as

the twin-related CSL group since all the rotations may be

produced by combinations of coherent �3 twinning opera-

tions. This group captures all possible results of interacting �3

twins, which are very important in a large class of materials;

also, it has been noted that any high-angle boundary may be

well approximated as a �3n misorientation, with n not very

large (Kopezky et al., 1991).
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3.4. Examples drawn from R3x

It should be clear that the type of rotation is encoded in the

string, since the string contains all the information as to which

coset the rotation belongs to (which, if we recall the hierarchy

in Table 1, also identi®es the type). In the case of �3!, the

encoding is particularly simple owing to the very high

symmetry of the set of generators. Not only are all the

generators of the same type (180� rotations about h111i axes),

but each pair of generators has the same relationship (since

any pair of 180� h111i rotations has the same geometrical

relationship as any other pair, within symmetry operations of

the crystal). What this means algebraically is that a3
i a3

j is the

same type of rotation (namely a �9) for any distinct i and j,

and is the identity when i = j. This rule for multiplying

representatives of �3 is the algebraic representation of �3±

�3±�9 and �1±�3±�3 triple junctions (to be clari®ed below).

We also see that there are two types of �27 rotations a3
i a3

j a3
k

with i 6� j and j 6� k, namely the ones with i� k (which turn out

to be the �27a rotations, as is easily checked by direct

calculation) and the ones with i 6� k (the �27b's). Simple

combinatorics produces the expected result, that there are 24

cosets of �27b but only 12 of �27a, in accord with standard

tables (Mykura, 1979). �81a rotations are represented as

(a3
i a3

j a3
ka3

j ��1, �81b as a3
i a3

j a3
ka3

l (i, j, k and l are all distinct) etc.

and again the multiplicities come out as they should, with 48

cosets of the former and 24 of the latter. Gottstein (1984)

produced a table relating strings to types on �3!, but using

notations and conventions that differ substantially from ours,

and with no proofs of the general validity of the approach.

If we were to consider p = 5 or more, the high symmetry

among the set of generators in the p = 3 case is lost, which

accounts for there being, e.g., more than one type of �25

rotation (so the `type' of a
p
i a

p
j with i 6� j can vary depending on

the choices of i and j if p = 5, unlike the case of p = 3). In

general, the identities and multiplicities of each type of rota-

tion can be traced to the symmetries among the generators

and in the representative strings. These symmetries ultimately

link back to the CSL-type categorizations of Grimmer (1973,

1974, 1976). Note that, if we had chosen a less symmetric set of

representatives of the �3 rotations, the symmetry properties

and type classi®cations of the higher �p! rotations would not

be as obvious Ð the result that the distinction between a �27a

and a �27b lies in the identity of the ®rst and last elements is

peculiar to our choice of representation.

Next, consider the algebraic expression of the � combina-

tion rule (see Fig. 1). We have three grains with orientations I,

A and B, as expressed in the reference frame of grain 1, and

the misorientations, in clockwise order and expressed in the

frame of the ®rst grain of each pair, are XI = A, YA = Aÿ1B and

ZB = Bÿ1, with the product XIYAZB = I expressing the

conservation of orientation (the subscript on a rotation giving

the frame in which the matrix is expressed). If all three

misorientations are elements of �p!, then they will each be

expressible uniquely as a string of representatives a
p
i . When we

form the product XY (which must equal Zÿ1, and thus be

equivalent to a string of the same length), we will ®nd that

some number k (possibly zero) of representatives on the right-

hand side of string X will cancel with an equal number of

representatives from the left-hand side of string Y. The result

is that the string Z is shorter than the sum of the lengths of the

other two by an even number, i.e.

nZ � nX � nY ÿ 2k: �14�
Since � = pn for each string, this translates to

�Z � �X�Y=p2k: �15�
Since pk is a common factor of �X and �Y (as their strings are

of length at least k), this is nothing other than the � combi-

nation rule in the special case of �p!. Thus the algebraic

representation helps provide an intuitive basis for the �
combination rule, but also takes us one step further, as we can

now make statements about the relative likelihood of different

values of k in (2). This is because we know that only one of the

p + 1 possible representatives of a given p will be able to lower

the � value, with the other p representatives raising it. A

similar thing happens when we generalize from �p! to the

entire CSL group, but we may have to rearrange the order of

factors via equations (8)±(10) to produce the maximum

number of cancellations.

As a speci®c example, consider the fact that a �3±�9±�27b

triple junction is allowed. An element of �27b might be

represented as the product a3
1a3

3a3
4, which may be shortened by

left-multiplying by a3
1 (which is its own inverse), leaving a3

3a3
4,

an element of �9. This is the algebraic representation of the

`reaction' �27b = �9 + �3, possible at a triple junction. In this

case, the conservation of misorientation equation would be

expressed as:

�a3
1a3

3a3
4��a3

3a3
4�ÿ1�a3

1� � I: �16�
Note the inversion on the �9 rotation, which is necessitated by

the need to go in a consistent direction around the loop. For

another example, a �9±�9±�9 triple junction might be

represented as:

�a3
1a3

2��a3
2a3

3��a3
3a3

1� � I: �17�
It is certainly possible to construct such a triple junction by

multiplying pairs of �9 matrices until the result is a �9 matrix

(Gertsman & Tangri, 1995; Miyazawa et al., 1996). But the

algebraic representation makes it clear exactly what form any

solution must have and how many solutions are possible ±

even in cases in which no solution exists. For example, if we try

to construct a �9±�27a±�27a triple junction, we ®nd it to be

impossible, even though it satis®es the � combination rule.

Since in our choice of representation a �27a will be of the

form a3
i a3

j a3
i for some i and j, it is clear that there is no pair of

�27a strings, the product of which will be a �9 string. Thus we

can avoid trying to ®nd such a triple junction by trial and error.

This demonstrates an important result that has been

somewhat overlooked in the literature, that the satisfaction of

the � combination rule is not suf®cient to guarantee crystal-

lographic compatibility. It is necessary to keep track not only

of the � values of the involved rotations, but also their types

and even the speci®c identities of the representatives that



produced the rotations. The restriction in the triple-junction

case is relatively weak, in that some combinations of types of

rotations with the given � values will not be compatible, but as

we consider more complicated topologies the added restric-

tions start to interact with one another. For quadruple nodes,

there are � labellings of the boundaries that satisfy the �
combination rule at every triple junction (and thus are locally

crystallographically compatible) but are still impossible (see

the next section for an example). For large-scale realistic

grain-boundary networks, the additional restrictions are

complex and quite dif®cult to work out in general. In a later

section, we outline a procedure that is guaranteed to generate

crystallographically compatible type labellings of all the

junctions in a network of any complexity. We do not know of a

computationally ef®cient solution for the inverse problem, i.e.

given a grain topology and a set of � and type labellings, to

determine whether there are any compatible grain-orientation

assignments. Using the techniques discussed in this paper,

though, we have expressed the problem in terms of graph

theory and the algebraic manipulation of strings, so that there

is no longer any need to work with explicit representations of

rotations. The problem is to ®nd an assignment of one string to

each node in the graph of the grain topology such that the type

of each link in the graph (representing a grain boundary)

matches the labelling we have chosen.

To summarize, we have developed an algebraic repre-

sentation of any CSL rotation coset (that is, a grain orienta-

tion) as a prime-factor decomposition that is unique on �p!

and unique subject to a sorting convention on the entire

group. The fundamental algebraic rules for manipulating the

strings are simple, namely that two adjacent elements with the

same p may be simpli®ed if and only if they are inverses, and

two elements with different p's may be swapped if their indices

are adjusted according to case-speci®c but easily discovered

rules [equation (8)], possibly with the introduction of �1

elements in the string, which may be manipulated with addi-

tional rules [equations (9)±(10)]. The rules suf®ce to convert

any string whatsoever into an equivalent sorted NIS string,

which we know to be unique. To see why, consider that we can

always swap prime elements until they are sorted, moving any

generated elements of �1 to the right end of the string, where

they do not interfere with the coset de®nition of equivalence.

Since the rules are reversible, this means the rules suf®ce to

generate any string equivalent to a given string. The �
combination rule, differences among types of rotations, and

multiplicities of various types of rotations come directly out of

the algebraic rules and the symmetries of the generators a
p
i .

Once the generators are constructed and their symmetries

identi®ed, we may simply do algebra on the generators and be

guaranteed that, for example, any triple junction we produce

will be crystallographically correct.

With this, we are able to move on to drawing and inter-

preting graphs.

4. The topological model

4.1. Topological mappings, with examples from R3x

We may now take our results and re-describe them in terms

of graphs. This requires merely an interpretation of the alge-

braic representation; no new results need be derived. In fact,

we can delve right in, starting with Fig. 2, a map of a portion of

�3!. Each vertex (marked with a square) is a coset, repre-

sentable by exactly one non-shortenable string of the a3
i . The
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Figure 1
De®nitions and governing equations for conservation of orientation (also
called crystallographic compatibility) around a triple junction.

Figure 2
(a) Map of a portion of the �3! twin-related group. Each box is one coset
of 24 elements. Links are labelled with the index i for the representative
a3

i linking the two cosets. Examples discussed in the text are highlighted.
(b) Highlight of the �3±�9±�27b triple junction example, showing how
to generate the triple-junction types from the labels of the links
connecting each pair of grain orientations.
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index i of the generator that links two adjacent cosets is

indicated as a number from 1 to 4 for each link. Since the

generators of �3! were chosen to be their own inverses, there

is no need to make this a directed graph, although this is not

always possible for larger primes. The graph is that of a free

group with four neighbors per vertex, and labelled such that

the � value of a vertex is equal to 3n, with n the number of

links between it and the central �1 vertex, which is the same

as the number of elements in its shortest string representation.

We have only drawn a fraction of the elements beyond �9, but

the remainder up to �243 may easily be constructed owing to

the symmetry of the structure. Implicit in this graph is the set

of distinctions among the different types in terms of symme-

tries in the strings, as well as the multiplicity of each type.

The string representing a given coset may simply be read off

the graph, starting from the �1 origin. For example, the only

�81d rotation shown may be reached by a sequence labelled

(1,2,1,2), and thus is represented by a3
1a3

2a3
1a3

2. If we were to

instead choose a more circuitous route, say along the sequence

labelled (1,2,1,3,3 ,2) (going out on a branch and then

returning via the same path), the resulting string would be

a3
1a3

2a3
1a3

3a3
3a3

2, which is immediately shortenable via the alge-

braic rule a3
3a3

3 � I to the previous representation. This is the

graphical representation of the double elimination rule, that

going out and returning along the same path has no effect.

Since �p! is a free group in our representation, there is no

other way to generate an ambiguity in the generation of a

string.

Allowed triple junctions may be immediately generated

simply by choosing three of the vertices (which represent the

three grain orientations) and tracing the paths that link them.

For example, if we choose the �1 origin, the �27b vertex

linked to it by the path (1,3,4), and the �3 vertex linked to �1

by the line labelled 1 (the relevant cosets and links being

highlighted in the ®gure), we ®nd that the three paths linking

the three grains are the rotations a3
1a3

3a3
4, a3

3a3
4 and a3

1, and this is

exactly the same �3±�9±�27b triple junction we used as an

example in a previous section. There is no need for one of the

grains to be at the origin; the grains a3
2, a3

1 and a3
1a3

3 would also

form a �3±�9±�27b triple junction, with all the rotations of

the same type as in the ®rst example, and thus entirely

equivalent to the ®rst triple junction to within an arbitrary

choice of coordinate systems. In other words, two triple

junctions that look equivalent on this topological graph really

are equivalent in physical terms. This is unsurprising, as a

group is in some sense homogeneous, so that the network must

look topologically the same from any node. We can also

immediately see that there are no �9±�27a±�27a triple

junctions (there being no pair of �27a vertices separated by a

distance of exactly two), while it is easy to construct �9±�9±

�9 triple junctions (simply choose three of the �3 vertices, for

example).

The fact that double elimination is the only simpli®cation

possible on strings in �p! has a practical consequence for the

important case of twin-dominated structures, which tend to

have clusters of grain boundaries with nearly ideal �3!

misorientations (Gertsman et al., 1994; Randle, 1996). The

restrictions on the ways in which such clusters may be

constructed are central to discussions in grain-boundary

engineering (Gertsman et al., 1994; Randle, 1996; Minich et al.,

2002). Consider such a cluster, and take some starting grain

within it to have the reference orientation (i.e. start at the �1

vertex in the graph). Now if we draw a contiguous path from

one grain to the next, we will follow a sequence of vertices in

the �3! graph, with the misorientation between adjacent

grains represented by the path linking their vertices in the

graph. If the path through the set of grains is closed, returning

to its starting point, then the path through the �3! tree must

similarly return to the �1 node, and the only way for this to

happen is for the steps to be retraced exactly. So in our �3±

�9±�27b example, going from grain 1 to grain 2 we have the

string a3
1, then from grain 2 to grain 3 we have a3

3a3
4 for a total

of a3
1a3

3a3
4, and to get back to grain 1 we must follow a path

a3
4a3

3a3
1, retracing the paths in the tree exactly. This procedure,

concatenating the strings in a closed loop of grain boundaries,

must retrace the steps regardless of the size of the loop, so long

as only ideal �3! boundaries are involved. In a highly twin

dominated structure, these loops can be very large, involving

many grains, and will overlap signi®cantly. The resulting

constraint on the structure is quite strong ± much stronger

than would be implied by the � combination rule alone. There

will be many imaginable structures that satisfy the � combi-

nation rule at every triple junction yet fail to work on a larger

scale (an example is described below). A large cluster of pure

�3! misorientations has much fewer (discrete) degrees of

freedom in the grain-boundary assignments than would be

expected at ®rst glance. All of these constraints are implicit in

the structure of Fig. 2(a); now that we have drawn this graph

there is no need to consider the explicit matrix or quaternion

forms of the rotations so far as crystallographic compatibility

is concerned.

This procedure can be generalized to any grain-boundary

topology (with each node a grain and each line a boundary)

and the entire CSL group. The algorithm is simple: We assign

one node in the CSL graph to each node in the grain-boundary

topology graph. Then the type of each boundary may be read

as the sequence of labels on the shortest path in the CSL graph

linking the two CSL nodes corresponding to two adjacent

grains. In short, we simply have to specify a relation between

the two topologies (the CSL graph and the grain-boundary

network graph), and everything about the orientations and

misorientations in the entire structure is determined, in a way

guaranteed to be crystallographically compatible. This

procedure is very straightforward in the case of �3!, but gets

more complex as we add more prime factors.

Some examples should clarify. For a triple junction, the

grain topology graph is simply a triangle. For a quadruple

node, it is a tetrahedron, with each vertex representing a grain,

each edge a grain boundary, and each side a triple junction.

Fig. 3 shows examples of possible and impossible constructions

on such a tetrahedron, still staying within the �3! group. The

mapping between the �3! graph and the tetrahedral grain

topology graph is represented by the capital letters on the �3!

graph. In the ®rst example (Fig. 3b), each pair of capital letters



is separated by exactly two �3 links, meaning that all the

boundaries are �9, so that this is a 6�9 quadruple node with

four �9±�9±�9 triple junctions. The other examples work in

the same way. Several of these examples (and some of the

associated observations) have already been shown in the

literature (Fortier et al., 1995; Miyazawa et al., 1996; Gertsman,

2001a,b), but generally using the relatively cumbersome

matrix representations of the rotations, and probably with

some trial and error involved in the generation of some of the

examples. We hope the reader will agree that, using the

representations developed in this work, these examples and

observations may be constructed with more ease, clarity,

generality and (in some cases) mathematical rigor. Speci®cally,

besides being able to construct examples of structures that are
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Figure 3
Tetrahedral representation of a quadruple node. (a) Notation, with single letters denoting grains, pairs denoting grain boundaries and triples denoting
triple junction lines. (b)±(d) Several examples of crystallographically compatible quadruple junctions. (e) One example that is incompatible yet satis®es
the � combination rule along all triple lines. ( f ) Assignments of orientations from (d) to the tetrakaidecahedral lattice, producing a �3 fraction of 5=7.
Assignments are shown for one plane (solid lines) and the next plane above it (dotted lines). Each succeeding pair of planes will swap the labels in pairs
(A, C) and (B, D). This example also illustrates the four-colorability of the network and how the aggregate statistics may differ from the statistics of each
quadruple node in three-dimensional networks. If instead we assign the orientations from (c), we obtain a structure with a �3 fraction of 4=7 and with
only �3 and �9 junctions present. (g) A case in which all quadruple nodes are allowable yet the global structure is not.
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possible, we can now easily prove that certain large general

classes of structures are not possible. With some practice in

applying the graphs, one can develop an intuition for the sets

of constructions that are and are not possible.

Using the construction in Fig. 3(b), we can see that it is

possible to make an entire grain-boundary network with only

�9 boundaries, if and only if the grain topology graph is four-

colorable, i.e. we can label each vertex with one of only four

labels, with no two adjacent vertices having the same label.

[Note that the `if' part of the theorem is implied in the work of

Miyazawa et al. (1996), but that the `only if' part is somewhat

harder to come by via their methods.] We choose the labels as

shown in Fig. 3(b), and the construction is complete. Since

there is no ®fth orientation that has a �9 relationship to more

than one of these, the construction fails for graphs that require

more than four colors. Since all planar graphs are four-color-

able (Appel & Haken, 1989), the construction is always

possible in a plane but almost never possible in three

dimensions, where four-colorability is a rare exception (in fact

there is no limit to the number of colors potentially required in

three dimensions). In practical terms, this means that a thin

®lm with a columnar grain structure has the potential for a

higher proportion of �9 boundaries (potentially 100%) than

does a random three-dimensional grain structure. We note

that the tetrakaidecahedral lattice often used in grain-

boundary models is one of these highly atypical four-colorable

three-dimensional networks, which will potentially skew

simulation results that depend on the network connectivity,

while the three-colorability of the commonly used hexagonal

tiling of the plane is similarly atypical for a two-dimensional

network.

The second example, Fig. 3(c), shows the only quadruple

node that contains �3 and �9 junctions and nothing else. Fig.

3(e) shows an attempt at generating another such example

and, even though every single triple junction in this

construction satis®es the � combination rule, the quadruple

node itself is impossible. The �3! graph for this structure

shows why Ð it would require a loop in the graph, while �3!

(taken as a set of cosets) is a free group with no loops.

Removing any element in this graph with a loop gives us a

valid graph; this is the graphical representation of the fact that

every triple junction in the attempted construction satis®es the

� combination rule. This is an example of how higher levels of

structure in a system can introduce frustrations that are not

evident at the more local levels. It is easy to produce further

examples in which e.g. the quadruple junctions are all valid yet

the complete structure is impossible. Fig. 3(g) is a simple

example, showing the simplest possible non-four-colorable

network with every boundary labelled as �9. We speculate

that this process continues inde®nitely ± that to enumerate all

such constraints would imply potential correlations at all

distance scales, and moreover that these correlations would be

very different in graphs of different typical colorabilities

(particularly in two versus three dimensions). Since even the �
combination rule by itself has been shown to have a control-

ling in¯uence on such ensemble behavior as percolation

thresholds in two-dimensional twin-dominated systems

(Minich et al., 2002), we propose that perhaps the detailed

structure of this group has far deeper physical consequences

than has been generally recognized [mirroring observations

made by Gertsman and collaborators (multiple references) for

example]. Obviously, the identity and processing history of

any material will also have controlling in¯uences, but our

results suggest that these in¯uences must be considered in the

context of the mathematical structures governing the

topology. Until now, a detailed, rigorously derived, intuitively

visualizable map of the twin-related rotation group has not

been available. We hope that our contribution will help to

shed some light on this issue.

Let us now consider the notion of a twin-limited structure.

This concept has been used by several researchers (Palumbo et

al., 1992; Miyazawa et al., 1996; Gertsman, 2001b) but with

important differences in de®nition. Generally, it refers to a

structure with the largest possible number fraction of �3

boundaries. This fraction is often taken to be 2=3, but this

result depends strongly on the context, as has been noted

(Gertsman & Szpunar, 1998; Gertsman, 2001b). The dimen-

sionality is certainly important, as is the manner in which �1

boundaries are handled.

Note that the �3=�9 ratio in the allowed pure �3=�9

quadruple node is 1:1 (Fig. 3c), which differs from the result in

two dimensions, with a pure �3=�9 twin-limited structure

containing nothing but �3 and �9 junctions in a 2:1 ratio. So

again we see a signi®cant dimensionality effect, so that the

twin-limited structures are notably different in two and three

dimensions. One should keep in mind, however, that the ratio

of boundary types in a three-dimensional structure can differ

from the ratio of boundary types in the average quadruple

node Ð even if there is only one type of quadruple node [here

is where our interpretation departs from that of Gertsman

(2001b)]. A speci®c construction demonstrating this will be

presented below. So it is possible to get a �3=�9 ratio greater

than 1:1 in a three-dimensional structure consisting of only �3

and �9 boundaries (see the caption of Fig. 3), but a ratio

approaching the 2:1 possible in two dimensions would put

enormous constraints on the structure and is unlikely to occur

in practice (it might be impossible Ð we have not proven it

one way or the other).

Yet it is possible to have 2=3 of the junctions in a quadruple

node be of the �3 type, as shown in Fig. 3(d), if we include a

low-angle �1 grain boundary. A proper consideration of this

case would require development of the concept of small

deviations from ideal CSL orientations, which is beyond the

scope of this paper but which has been discussed in the

literature (e.g. Frary & Schuh, 2003). A simple approach is to

introduce small-angle rotation matrices and to develop

approximation techniques depending on the commutativity to

®rst order of small rotations, which is essentially what is done

by Frary & Schuh (2003), although their statistical results are

puzzling [e.g. the uniform distribution over their limiting

tetrahedra, which should not occur with an unbiased selection

of deviations over SO(3) in which small rotation angles �
would appear with a probability proportional to �2]. �1

boundaries are sometimes neglected in discussions of grain-



boundary networks, in part because experimentally it is dif®-

cult to distinguish a nearly perfect �1 boundary from localized

lattice strain. This example should serve as a reminder that the

low-angle boundaries can play an essential role in the network

topology.

Allowing the low-angle �1 boundaries also allows us to

construct three-dimensional networks with �3 fractions above

the 2=3 limit that applies in two dimensions. Fig. 3( f) shows

how to assign orientations to a tetrakaidecahedral array to

reach a �3 fraction of 5=7 = 71.4%, with the remaining

boundaries equally split between �1 and �9. The upper limit

to the �3 fraction in a pure �1=�3=�9 system is likely to be

somewhat more than this.

4.2. Extension beyond R3x

Fig. 4 shows examples of how to draw graphs for more than

one prime factor. We start with Fig. 4(a), a graph of �5! up to

�125. The representative quaternions in this case are chosen

to be a5
�1 = [�2 1 0 0], a5

�2 = [�2 0 1 0] and a5
�3 = [�2 0 0 1].

This differs from the choice in Table 2 but makes the

symmetry somewhat more apparent and also lets us show how

to draw graphs in cases in which the a
p
i are not self-inverses.

The graph is a directed graph, with each label showing the

path followed if we multiply by a5
i (in the direction of the

arrow) or the inverse a5
ÿi (against the arrow), where i now

ranges from 1 to 3. The symmetry of the set of representatives

of �5 is more akin to the faces of a cube, compared to the

tetrahedral symmetry of the p = 3 case where each of the four

generators has an equivalent relationship to each of the other

generators. The symmetry of the graph for �5! is noticeably

weaker than that for �3!, for instance (as already noted) there

are two different types of �52 rotations but only one of �32

rotations. Also, since each vertex has six nodes instead of four

(three each incoming and outgoing labelled 1, 2 and 3), the

tree grows quite quickly and we only include a small repre-

sentative sample of the network. The sample is suf®cient to

reconstruct the entire tree up to �125 by use of symmetry.

Fig. 4(b) then shows a portion of the graph of �3!5!, that is,

all CSL matrices with all prime factors of � in the set {3, 5}.

This tree expands even faster than in the �5! case, and only

enough is drawn to show the basic idea. Labels are omitted not

only to reduce clutter but to avoid certain complications which

we will consider shortly. Essentially, at every node in the �5!

tree (shown in heavy lines), we may place the origin of a �3!

tree. We know from the unique sorted factorization properties

that each coset of �3!5! will appear exactly once in this tree.

But we could also have drawn a �3! tree and put a �5! tree at

every node, and this too would have reached each coset

exactly once. This is the graphical representation of the

difference between sorting and reverse sorting. What this

means is that, from each of the four �3 nodes, there are six �5

lines linking it to six of the 24 �15 nodes. We did not draw

these lines in, for two reasons. First, the diagram would have

been hopelessly cluttered. Second, the detailed pattern of

connectivity of the lines is rather meaningless (although some

aspects are invariants), resulting as it does from the arbitrary
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Figure 4
Additional examples incorporating �5!. (a) Map of a portion of �5!.
Links are labelled with the alternative a5

i described in the text, in the
direction given by the arrows for i = 1, 2, 3 and in the opposite direction
for i = ÿ1, ÿ2, ÿ3. (b) A small portion of �3!5!. The a5

i links are
highlighted. (c) Illustrating the ambiguity that makes labelling graphs
with more than one prime factor dif®cult.
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choice of representatives a3
i and a5

i . The pattern would have to

be determined in detail for any speci®c choice of representa-

tives. This would be the graphical representation of equation

(8) in the previous section. Equations (9)±(10) have no

representation in these kinds of graphs, since they deal with

the properties of the symmetry group �1, which is simpli®ed

in the graphs by letting each node represent a coset with

respect to �1.

The impact of the �1 element appearing in (8) should be

considered more closely. Consider Fig. 4(c), a small portion of

the �3!5! graph. We show a single �15 node that may be

reached either by taking ®rst a �3 path and then a �5 path

from the origin, or by taking a �5 path and then a �3 path.

The two products of pairs of generators will produce the same

coset, but will not in general be equal, differing by a factor of

some element of �1 as in (8). This appears to be an inevitable

consequence of the non-commutativity of rotations about

different axes and the loss of symmetry involved in combining

two sets of representatives with different p's. Essentially, we

end up in two different coordinate systems that are equivalent

under cubic symmetry as expressed in the target grain.

Performing an additional rotation (say, multiplying by a3
1) will

yield a different result depending on which coordinate system

is used. Even the � number of the result is in question, for one

of the a3
1 paths from our �15 node might lead to a �45, the

other to a �5. Algebraically, this ambiguity is expressed as:

a3
i a5

j a3
1 � a5

ka3
l Sma3

1 �18�

and we note that, while Sma3
1 is guaranteed to be the same type

as a3
1, it will not always be in the same coset, and so is likely to

be represented by some a3
i other than that with i = 1. So it is in

general not possible to label the links on the graph unless we

choose a convention, which can be the same convention as

before, such that the link between two cosets is the one that

would appear in a sorted NIS string representation. The types

of grain boundaries between any two nodes will then have to

be calculated using the rules in equations (8)±(10).

In short, the graphs for �p! are much easier to work with,

since the way we are drawing the graphs suppresses the

information about which element is used to represent each

coset, but this information is important for cases involving

more than one prime factor since the same coset may be

reached by more than one shortest path in these cases.

We have now seen the graphical analogs to all the essential

aspects of the algebraic representation, namely unique sorted

and reverse-sorted representations of the cosets, determina-

tion of boundary types from grain orientations, the rules for

manipulation of strings, and the determination of what

boundary type assignments are consistent with crystal-

lographic constraints such as the � combination rule (and

generalizations of the � combination rule to more complex

topologies). With the explicit construction of the representa-

tives in Table 2, it is possible to derive all of the algebraic

transformations and draw all of the graphs for any desired part

of the CSL group. Fortunately, only the elementary transfor-

mations such as those in (8) need be calculated for each case in

terms of quaternions or matrices. Once this is complete (as we

have done for all physically meaningful cases), and the types

of rotations are identi®ed in terms of their conventional

notation (e.g. �27a versus �27b is identi®ed as a particular

symmetry in the representative string), then everything may

be done in terms of the prime representatives a
p
i and the

symmetry elements Si and there will no longer be any need to

deal with matrix multiplications or quaternion algebra. The

advantages are quite signi®cant in the important case of �3!,

where we only need to consider strings from a four-letter

alphabet to do every possible calculation.

5. Summary and conclusions

As the CSL model is generally taken to be just one of the ®rst

steps in describing grain boundaries, so the formalism devel-

oped in this work can be a starting point for more in-depth

investigations. Deviations from the ideal CSL orientations, for

instance, can be introduced by including small random rota-

tions, possibly in an approximation scheme taking advantage

of the ®rst-order commutativity of small rotations and their

random nature. This has the potential to produce reasonable

statistical calculations for large topologies without the need to

calculate all the rotations in detail. Small intragrain strains

(King, 1999) may be dealt with in a similar manner. Gener-

alization of our approach to the O-lattice concept (Bollmann,

1972; MacLaren & Aindow, 1997) may also be of interest, and

consideration of non-cubic lattices is also a natural extension

of the approach. Unfortunately, without cubic symmetry the

natural mapping between integer quaternions and CSL rota-

tions is lost. The related proofs are likely to be correspond-

ingly less accessible.

Instead of generalizing, we can also proceed in the opposite

direction, to simpler models which may be more clear in our

formalism than they would be otherwise. Signi®cant results

have been obtained in the literature from simple considera-

tions of the crystallographic constraints in a small portion of

the �3! group (Fortier et al., 1995; Kumar et al., 2000; Schuh et

al., 2003), including the effects of the � combination rule and

quadruple-node constraints on the statistical behavior of

grain-boundary topologies. Since we can now easily represent

the structure of the entire �3! group with extremely simple

manipulations of strings with a four-letter alphabet, the

generalization of such results should be greatly facilitated. It is

easy to generate an exhaustive list of all the quadruple nodes

with all-�3! boundaries up to a ®xed limit, for instance. Thus

we will avoid both neglecting real possibilities (the classic

example being the �9±�9±�9 triple junction, which is

neglected almost as a matter of course in some segments of the

literature) and wasting time on apparent possibilities that are

in fact crystallographically inconsistent [such as the 4�3=2�9

quadruple node in Fig. 3(e)].

The abstract concept of the constraining effect of the group

connectivity on the grain-boundary network is an interesting

and important notion that can be very confusing at ®rst glance.

Considered in terms of mapping one graph to another such as

in Fig. 4, the idea becomes much more intuitive and accessible,



and some results that were puzzling or poorly understood in

the literature become more obvious in light of these simple

pictures. In addition to clarifying old results, we have made

observations regarding connections among the CSL group

structure, the dimensionality and colorability of graphs, and

the nature of twin-limited structures in different topologies.

We have every hope that our approach will facilitate rapid

progress in the statistical understanding of grain-boundary

networks.

Thanks to David Barber for useful discussions on the

factorization properties of quaternions. This work was

performed under the auspices of the US Department of

Energy by University of California, Lawrence Livermore

National Laboratory under Contract W-7405-Eng-48.
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